<strike id="6q0um"></strike>
  • <strike id="6q0um"><s id="6q0um"></s></strike>
  • <ul id="6q0um"></ul><strike id="6q0um"></strike>

    當前位置:高考升學網 > 要點知識 > 正文

    高三數學必考知識點梳理歸納

    更新:2023-09-17 20:32:20 高考升學網

    高三數學必考知識點總結【五篇】1

    一、函數的定義域的常用求法:

    1、分式的分母不等于零;

    2、偶次方根的被開方數大于等于零;

    3、對數的真數大于零;

    4、指數函數和對數函數的底數大于零且不等于1;

    5、三角函數正切函數y=tanx中x≠kπ+π/2;

    6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。

    二、函數的解析式的常用求法:

    1、定義法;

    2、換元法;

    3、待定系數法;

    4、函數方程法;

    5、參數法;

    6、配方法

    高三數學必考知識點梳理歸納

    三、函數的值域的常用求法:

    1、換元法;

    2、配方法;

    3、判別式法;

    4、幾何法;

    5、不等式法;

    6、單調性法;

    7、直接法

    四、函數的最值的常用求法:

    1、配方法;

    2、換元法;

    3、不等式法;

    4、幾何法;

    5、單調性法

    五、函數單調性的常用結論:

    1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數。

    2、若f(x)為增(減)函數,則—f(x)為減(增)函數。

    3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。

    4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。

    5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。

    六、函數奇偶性的常用結論:

    1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。

    2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

    3、一個奇函數與一個偶函數的積(商)為奇函數。

    4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。

    5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(—x)]+1/2[f(x)+f(—x)],該式的特點是:右端為一個奇函數和一個偶函數的和。

    高三數學必考知識點總結【五篇】2

    a(1)=a,a(n)為公差為r的等差數列

    通項公式:

    a(n)=a(n—1)+r=a(n—2)+2r=、、、=a[n—(n—1)]+(n—1)r=a(1)+(n—1)r=a+(n—1)r、

    可用歸納法證明。

    n=1時,a(1)=a+(1—1)r=a。成立。

    假設n=k時,等差數列的通項公式成立。a(k)=a+(k—1)r

    則,n=k+1時,a(k+1)=a(k)+r=a+(k—1)r+r=a+[(k+1)—1]r、

    通項公式也成立。

    因此,由歸納法知,等差數列的通項公式是正確的。

    求和公式:

    S(n)=a(1)+a(2)+、、、+a(n)

    =a+(a+r)+、、、+[a+(n—1)r]

    =na+r[1+2+、、、+(n—1)]

    =na+n(n—1)r/2

    同樣,可用歸納法證明求和公式。

    a(1)=a,a(n)為公比為r(r不等于0)的等比數列

    通項公式:

    a(n)=a(n—1)r=a(n—2)r^2=、、、=a[n—(n—1)]r^(n—1)=a(1)r^(n—1)=ar^(n—1)、

    可用歸納法證明等比數列的通項公式。

    求和公式:

    S(n)=a(1)+a(2)+、、、+a(n)

    =a+ar+、、、+ar^(n—1)

    =a[1+r+、、、+r^(n—1)]

    r不等于1時,

    S(n)=a[1—r^n]/[1—r]

    r=1時,

    S(n)=na、

    同樣,可用歸納法證明求和公式。

    高三數學必考知識點總結【五篇】3

    1、函數的奇偶性

    (1)若f(x)是偶函數,那么f(x)=f(—x);

    (2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);

    (3)判斷函數奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);

    (4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

    (5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

    2、復合函數的有關問題

    (1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

    (2)復合函數的單調性由“同增異減”判定;

    3、函數圖像(或方程曲線的對稱性)

    (1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

    (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

    (3)曲線C1:f(x,y)=0,關于y=x+a(y=—x+a)的`對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

    (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;

    (5)若函數y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關于直線x=a對稱;

    (6)函數y=f(x—a)與y=f(b—x)的圖像關于直線x=對稱;

    4、函數的周期性

    (1)y=f(x)對x∈R時,f(x+a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;

    (2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

    (3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

    (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;

    (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;

    (6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

    5、方程k=f(x)有解k∈D(D為f(x)的值域);

    6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

    7、(1)(a>0,a≠1,b>0,n∈R+);

    (2)logaN=(a>0,a≠1,b>0,b≠1);

    (3)logab的符號由口訣“同正異負”記憶;

    (4)alogaN=N(a>0,a≠1,N>0);

    8、判斷對應是否為映射時,抓住兩點:

    (1)A中元素必須都有象且;

    (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

    9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

    10、對于反函數,應掌握以下一些結論:

    (1)定義域上的單調函數必有反函數;

    (2)奇函數的反函數也是奇函數;

    (3)定義域為非單元素集的偶函數不存在反函數;

    (4)周期函數不存在反函數;

    (5)互為反函數的兩個函數具有相同的單調性;

    (6)y=f(x)與y=f—1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A);

    11、處理二次函數的問題勿忘數形結合

    二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關系;

    12、依據單調性

    利用一次函數在區間上的保號性可解決求一類參數的范圍問題;

    13、恒成立問題的處理方法

    (1)分離參數法;

    (2)轉化為一元二次方程的根的分布列不等式(組)求解;

    高三數學必考知識點總結【五篇】4

    1、有關行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復中,首先應從解決“行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規律——充分利用線線行(垂直)、線面行(垂直)、面面行(垂直)相互轉化的,以提高邏輯思維能力和空間想象能力。

    2、判定兩個面行的方法:

    (1)根據定義——證明兩面沒有公共點;

    (2)判定定理——證明一個面內的兩條相交直線都行于另一個面;

    (3)證明兩面同垂直于一條直線。

    3、兩個面行的主要性質:

    (1)由定義知:“兩行面沒有公共點”;

    (2)由定義推得:“兩個面行,其中一個面內的直線必行于另一個面”;

    (3)兩個面行的性質定理:“如果兩個行面同時和第三個面相交,那么它們的交線行”;

    (4)一條直線垂直于兩個行面中的一個面,它也垂直于另一個面;

    (5)夾在兩個行面間的行線段相等;

    (6)經過面外一點只有一個面和已知面行。

    高三數學必考知識點總結【五篇】5

    1、直線的傾斜角

    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

    2、直線的斜率

    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

    ②過兩點的直線的斜率公式:

    注意下面四點:

    (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

    (2)k與P1、P2的順序無關;

    (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

    (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

    3、直線方程

    點斜式:

    直線斜率k,且過點

    注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示、但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

    (1)、高三數學知識點及公式總結大全

    (2)、高三數學必考知識點歸納公式大全

    (3)、高三女兒數學只考了108分 老爸的這一做法絕了

    (4)、2019揚州高三模擬統考語文數學試題難度點評

    (5)、2019年湖北高三2月聯考數學理試題及答案

    (6)、高三數學教師教學工作總結

    (7)、高三復班數學班主任工作總結

    相關文章

    最新圖文

    志愿者、志愿活動和志愿精

    時間:2023-12-25 09:0:26

    人教版高中地理必修一知識

    時間:2023-09-20 19:0:44

    高中地理重要知識點總結大全

    時間:2023-09-15 22:0:55

    高中地理必修一知識點總結

    時間:2023-09-21 05:0:56
    亚洲精品高清国产一线久久| 含羞草国产亚洲精品岁国产精品 | 浮力影院亚洲国产第一页| 久久水蜜桃亚洲AV无码精品| 亚洲AV第一页国产精品| 中文字幕亚洲图片| 国产亚洲欧洲Aⅴ综合一区 | 国产亚洲福利精品一区二区| 亚洲色欲色欲www在线播放| 亚洲国产日韩在线成人蜜芽 | 红杏亚洲影院一区二区三区| 国产成人毛片亚洲精品| 亚洲成a人片在线观看国产| jjzz亚洲亚洲女人| 国产午夜亚洲精品不卡电影| 亚洲a∨无码精品色午夜| 九九精品国产亚洲AV日韩| 亚洲大码熟女在线观看| 亚洲老熟女五十路老熟女bbw| 亚洲精品国产av成拍色拍| 亚洲最大中文字幕无码网站| 精品丝袜国产自在线拍亚洲| 亚洲色成人WWW永久在线观看| 日本亚洲免费无线码| 亚洲欧美第一成人网站7777| 亚洲国产精品一区二区三区在线观看| 亚洲va久久久久| 亚洲国产AV一区二区三区四区| 色综合久久精品亚洲国产| 亚洲成年看片在线观看| 亚洲综合亚洲综合网成人| 亚洲人成人网站色www| 久久综合图区亚洲综合图区| 亚洲综合成人网在线观看| 亚洲国产成人91精品| 亚洲精品无码久久久久A片苍井空 亚洲精品无码久久久久YW | 亚洲欧洲免费视频| 亚洲欧洲日产韩国在线| 亚洲AV无码无限在线观看不卡| 亚洲av日韩av永久在线观看| 亚洲日韩人妻第一页|